Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 51(3): 1225-1233, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37140261

RESUMO

Sister chromatid segregation is the final irreversible step of mitosis. It is initiated by a complex regulatory system that ultimately triggers the timely activation of a conserved cysteine protease named separase. Separase cleaves the cohesin protein ring that links the sister chromatids and thus facilitates their separation and segregation to the opposite poles of the dividing cell. Due to the irreversible nature of this process, separase activity is tightly controlled in all eukaryotic cells. In this mini-review, we summarize the latest structural and functional findings on the regulation of separase, with an emphasis on the regulation of the human enzyme by two inhibitors, the universal inhibitor securin and the vertebrate-specific inhibitor CDK1-cyclin B. We discuss the two fundamentally different inhibitory mechanisms by which these inhibitors block separase activity by occluding substrate binding. We also describe conserved mechanisms that facilitate substrate recognition and point out open research questions that will guide studies of this fascinating enzyme for years to come.


Assuntos
Proteínas de Ciclo Celular , Mitose , Humanos , Separase/química , Separase/genética , Separase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endopeptidases/genética
2.
Nature ; 596(7870): 138-142, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290405

RESUMO

In early mitosis, the duplicated chromosomes are held together by the ring-shaped cohesin complex1. Separation of chromosomes during anaphase is triggered by separase-a large cysteine endopeptidase that cleaves the cohesin subunit SCC1 (also known as RAD212-4). Separase is activated by degradation of its inhibitors, securin5 and cyclin B6, but the molecular mechanisms of separase regulation are not clear. Here we used cryogenic electron microscopy to determine the structures of human separase in complex with either securin or CDK1-cyclin B1-CKS1. In both complexes, separase is inhibited by pseudosubstrate motifs that block substrate binding at the catalytic site and at nearby docking sites. As in Caenorhabditis elegans7 and yeast8, human securin contains its own pseudosubstrate motifs. By contrast, CDK1-cyclin B1 inhibits separase by deploying pseudosubstrate motifs from intrinsically disordered loops in separase itself. One autoinhibitory loop is oriented by CDK1-cyclin B1 to block the catalytic sites of both separase and CDK19,10. Another autoinhibitory loop blocks substrate docking in a cleft adjacent to the separase catalytic site. A third separase loop contains a phosphoserine6 that promotes complex assembly by binding to a conserved phosphate-binding pocket in cyclin B1. Our study reveals the diverse array of mechanisms by which securin and CDK1-cyclin B1 bind and inhibit separase, providing the molecular basis for the robust control of chromosome segregation.


Assuntos
Proteína Quinase CDC2/química , Proteína Quinase CDC2/metabolismo , Ciclina B1/química , Ciclina B1/metabolismo , Securina/química , Securina/metabolismo , Separase/química , Separase/metabolismo , Motivos de Aminoácidos , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/ultraestrutura , Quinases relacionadas a CDC2 e CDC28/química , Quinases relacionadas a CDC2 e CDC28/metabolismo , Quinases relacionadas a CDC2 e CDC28/ultraestrutura , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Microscopia Crioeletrônica , Ciclina B1/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Fosfosserina/metabolismo , Ligação Proteica , Domínios Proteicos , Securina/ultraestrutura , Separase/antagonistas & inibidores , Separase/ultraestrutura , Especificidade por Substrato
3.
Subcell Biochem ; 96: 217-232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252730

RESUMO

Separase is a large cysteine protease in eukaryotes and has crucial roles in many cellular processes, especially chromosome segregation during mitosis and meiosis, apoptosis, DNA damage repair, centrosome disengagement and duplication, spindle stabilization and elongation. It dissolves the cohesion between sister chromatids by cleaving one of the subunits of the cohesin ring for chromosome segregation. The activity of separase is tightly controlled at many levels, through direct binding of inhibitory proteins as well as posttranslational modification. Dysregulation of separase activity is linked to cancer and genome instability, making it a target for drug discovery. One of the best-known inhibitors of separase is securin, which has been identified in yeast, plants, and animals. Securin forms a tight complex with separase and potently inhibits its catalytic activity. Recent structures of the separase-securin complex have revealed the molecular mechanism for the inhibitory activity of securin. A segment of securin is bound in the active site of separase, thereby blocking substrate binding. Securin itself is not cleaved by separase as its binding mode is not compatible with catalysis. Securin also has extensive interactions with separase outside the active site, consistent with its function as a chaperone to stabilize this enzyme.


Assuntos
Securina/química , Securina/metabolismo , Separase/química , Separase/metabolismo , Animais , Segregação de Cromossomos , Humanos , Separase/antagonistas & inibidores
4.
Nat Commun ; 10(1): 5189, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729382

RESUMO

Chromosome segregation begins when the cysteine protease, separase, cleaves the Scc1 subunit of cohesin at the metaphase-to-anaphase transition. Separase is inhibited prior to metaphase by the tightly bound securin protein, which contains a pseudosubstrate motif that blocks the separase active site. To investigate separase substrate specificity and regulation, here we develop a system for producing recombinant, securin-free human separase. Using this enzyme, we identify an LPE motif on the Scc1 substrate that is distinct from the cleavage site and is required for rapid and specific substrate cleavage. Securin also contains a conserved LPE motif, and we provide evidence that this sequence blocks separase engagement of the Scc1 LPE motif. Our results suggest that rapid cohesin cleavage by separase requires a substrate docking interaction outside the active site. This interaction is blocked by securin, providing a second mechanism by which securin inhibits cohesin cleavage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Separase/metabolismo , Motivos de Aminoácidos , Anáfase , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Metáfase , Securina/genética , Securina/metabolismo , Separase/química , Especificidade por Substrato
5.
Curr Opin Struct Biol ; 49: 114-122, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29452922

RESUMO

The cysteine protease separase opens the cohesin ring by cleaving its kleisin subunit and is a pivotal cell cycle factor for the transition from metaphase to anaphase. It is inhibited by forming a complex with the chaperone securin, and in vertebrates, also by the Cdk1-cyclin B1 complex. Separase is activated upon the destruction of securin or cyclin B1 by the proteasome, after ubiquitination by the anaphase-promoting complex/cyclosome (APC/C). Here we review recent structures of the active protease segment of Chaetomium thermophilum separase in complex with a substrate-mimic inhibitor and full-length Saccharomyces cerevisiae and Caenorhabditis elegans separase in complex with securin. These structures define the mechanism for substrate recognition and catalysis by separase, and show that securin has extensive contacts with separase, consistent with its chaperone function. They confirm that securin inhibits separase by binding as a pseudo substrate.


Assuntos
Segregação de Cromossomos , Securina/química , Securina/metabolismo , Separase/química , Separase/metabolismo , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Nat Struct Mol Biol ; 24(4): 414-418, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28263324

RESUMO

Separase is a caspase-family protease that initiates chromatid segregation by cleaving the kleisin subunits (Scc1 and Rec8) of cohesin, and regulates centrosome duplication and mitotic spindle function through cleavage of kendrin and Slk19. To understand the mechanisms of securin regulation of separase, we used single-particle cryo-electron microscopy (cryo-EM) to determine a near-atomic-resolution structure of the Caenorhabditis elegans separase-securin complex. Separase adopts a triangular-shaped bilobal architecture comprising an N-terminal tetratricopeptide repeat (TPR)-like α-solenoid domain docked onto the conserved C-terminal protease domain. Securin engages separase in an extended antiparallel conformation, interacting with both lobes. It inhibits separase by interacting with the catalytic site through a pseudosubstrate mechanism, thus revealing that in the inhibited separase-securin complex, the catalytic site adopts a conformation compatible with substrate binding. Securin is protected from cleavage because an aliphatic side chain at the P1 position represses protease activity by disrupting the organization of catalytic site residues.


Assuntos
Microscopia Crioeletrônica , Securina/ultraestrutura , Separase/ultraestrutura , Motivos de Aminoácidos , Animais , Caenorhabditis elegans , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Securina/química , Separase/química , Especificidade por Substrato
8.
Nature ; 542(7640): 255-259, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28146474

RESUMO

Separase is a cysteine protease with a crucial role in the dissolution of cohesion among sister chromatids during chromosome segregation. In human tumours separase is overexpressed, making it a potential target for drug discovery. The protease activity of separase is strictly regulated by the inhibitor securin, which forms a tight complex with separase and may also stabilize this enzyme. Separases are large, 140-250-kilodalton enzymes, with an amino-terminal α-helical region and a carboxy-terminal caspase-like catalytic domain. Although crystal structures of the C-terminal two domains of separase and low-resolution electron microscopy reconstructions of the separase-securin complex have been reported, the atomic structures of full-length separase and especially the complex with securin are unknown. Here we report crystal structures at up to 2.6 Å resolution of the yeast Saccharomyces cerevisiae separase-securin complex. The α-helical region of separase (also known as Esp1) contains four domains (I-IV), and a substrate-binding domain immediately precedes the catalytic domain and has tight associations with it. The separase-securin complex assumes a highly elongated structure. Residues 258-373 of securin (Pds1), named the separase interaction segment, are primarily in an extended conformation and traverse the entire length of separase, interacting with all of its domains. Most importantly, residues 258-269 of securin are located in the separase active site, illuminating the mechanism of inhibition. Biochemical studies confirm the structural observations and indicate that contacts outside the separase active site are crucial for stabilizing the complex, thereby defining an important function for the helical region of separase.


Assuntos
Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Securina/química , Securina/metabolismo , Separase/antagonistas & inibidores , Separase/química , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Separase/metabolismo
9.
J Cell Biochem ; 118(6): 1283-1299, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27966791

RESUMO

Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 118: 1283-1299, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Centríolos/genética , Metáfase , Neoplasias/metabolismo , Separase/metabolismo , Animais , Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Meiose , Modelos Biológicos , Neoplasias/genética , Separase/química
10.
Open Biol ; 6(4): 160032, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27249343

RESUMO

The protease separase plays a key role in sister chromatid disjunction and centriole disengagement. To maintain genomic stability, separase activity is strictly regulated by binding of an inhibitory protein, securin. Despite its central role in cell division, the separase and securin complex is poorly understood at the structural level. This is partly owing to the difficulty of generating a sufficient quantity of homogeneous, stable protein. Here, we report the production of Caenorhabditis elegans separase-securin complex, and its characterization using biochemical methods and by negative staining electron microscopy. Single particle analysis generated a density map at a resolution of 21-24 Å that reveals a close, globular structure of complex connectivity harbouring two lobes. One lobe matches closely a homology model of the N-terminal HEAT repeat domain of separase, whereas the second lobe readily accommodates homology models of the separase C-terminal death and caspase-like domains. The globular structure of the C. elegans separase-securin complex contrasts with the more elongated structure previously described for the Homo sapiens complex, which could represent a different functional state of the complex, suggesting a mechanism for the regulation of separase activity through conformational change.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Complexos Multiproteicos/química , Securina/química , Separase/química , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/ultraestrutura , Biologia Computacional , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Domínios Proteicos , Estabilidade Proteica , Securina/isolamento & purificação , Securina/metabolismo , Securina/ultraestrutura , Separase/isolamento & purificação , Separase/metabolismo , Separase/ultraestrutura
11.
Nature ; 532(7597): 131-4, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027290

RESUMO

Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaetomium/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Separase/química , Separase/metabolismo , Sequência de Aminoácidos , Ligação Competitiva/efeitos dos fármacos , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Segregação de Cromossomos , Cristalografia por Raios X , Modelos Moleculares , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Securina/química , Securina/genética , Securina/metabolismo , Securina/farmacologia , Separase/antagonistas & inibidores , Relação Estrutura-Atividade , Especificidade por Substrato/genética
12.
PLoS Comput Biol ; 11(10): e1004548, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26513470

RESUMO

Separases are large proteins that mediate sister chromatid disjunction in all eukaryotes. They belong to clan CD of cysteine peptidases and contain a well-conserved C-terminal catalytic protease domain similar to caspases and gingipains. However, unlike other well-characterized groups of clan CD peptidases, there are no high-resolution structures of separases and the details of their regulation and substrate recognition are poorly understood. Here we undertook an in-depth bioinformatical analysis of separases from different species with respect to their similarity in amino acid sequence and protein fold in comparison to caspases, MALT-1 proteins (mucosa-associated lymphoidtissue lymphoma translocation protein 1) and gingipain-R. A comparative model of the single C-terminal caspase-like domain in separase from C. elegans suggests similar binding modes of substrate peptides between these protein subfamilies, and enables differences in substrate specificity of separase proteins to be rationalised. We also modelled a newly identified putative death domain, located N-terminal to the caspase-like domain. The surface features of this domain identify potential sites of protein-protein interactions. Notably, we identified a novel conserved region with the consensus sequence WWxxRxxLD predicted to be exposed on the surface of the death domain, which we termed the WR motif. We envisage that findings from our study will guide structural and functional studies of this important protein family.


Assuntos
Caspases/química , Caspases/ultraestrutura , Simulação de Acoplamento Molecular , Receptores de Morte Celular/química , Separase/química , Separase/ultraestrutura , Adesinas Bacterianas/química , Adesinas Bacterianas/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Cisteína Endopeptidases/química , Cisteína Endopeptidases/ultraestrutura , Ativação Enzimática , Cisteína Endopeptidases Gingipaínas , Modelos Químicos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Morte Celular/ultraestrutura , Relação Estrutura-Atividade , Especificidade por Substrato
13.
Mol Cell ; 58(3): 495-506, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25921067

RESUMO

Ring-shaped cohesin keeps sister chromatids paired until cleavage of its Scc1/Rad21 subunit by separase triggers chromosome segregation in anaphase. Vertebrate separase is held inactive by mutually exclusive binding to securin or Cdk1-cyclin B1 and becomes unleashed only upon ubiquitin-dependent degradation of these regulators. Although most separase is usually found in association with securin, this anaphase inhibitor is dispensable for murine life while Cdk1-cyclin B1-dependent control of separase is essential. Here, we show that securin-independent inhibition of separase by Cdk1-cyclin B1 in early mitosis requires the phosphorylation-specific peptidyl-prolyl cis/trans isomerase Pin1. Furthermore, isomerization of previously securin-bound separase at the metaphase-to-anaphase transition renders it resistant to re-inhibition by residual securin. At the same time, isomerization also limits the half-life of separase's proteolytic activity, explaining how cohesin can be reloaded onto telophase chromatin in the absence of securin and cyclin B1 without being cleaved.


Assuntos
Segregação de Cromossomos/genética , Regulação Enzimológica da Expressão Gênica , Peptidilprolil Isomerase/genética , Separase/genética , Anáfase/genética , Proteína Quinase CDC2 , Cromátides/genética , Ciclina B1/química , Ciclina B1/genética , Ciclina B1/metabolismo , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Células HEK293 , Humanos , Immunoblotting , Metáfase/genética , Microscopia de Fluorescência , Mitose/genética , Modelos Genéticos , Modelos Moleculares , Mutação , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Ligação Proteica , Conformação Proteica , Interferência de RNA , Securina/genética , Securina/metabolismo , Separase/química , Separase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...